A Novel Inhibitor of Mammalian Triosephosphate Isomerase Found by an In Silico Approach

نویسندگان

  • Lorraine Marsh
  • Kaushal Shah
چکیده

Triosephosphate isomerase (TIM) is an essential, highly conserved component of glycolysis. Tumors are often dependent on glycolysis for energy and metabolite production (the Warburg effect). Glycolysis inhibitors thus show promise as cancer treatments. TIM inhibition, unlike inhibition of other glycolysis enzymes, also produces toxic methylglyoxal targeted to regions of high glycolysis, an effect that might also be therapeutically useful. Thus TIM is an attractive drug target. A total of 338,562 lead-like molecules were analyzed computationally to find TIM inhibitors by an efficient "double screen" approach. The first fragment-sized compounds were studied using structure-based virtual screening to identify binding motifs for mammalian TIM. Subsequently, larger compounds, filtered to meet the binding criteria developed in the first analysis, were ranked using a second round of structure-based virtual screening. A compound was found that inhibited mammalian TIM in vitro in the micromolar range. Docking and molecular dynamics (MD) suggested that the inhibitor made hydrogen bond contacts with TIM catalytic residues. In addition, hydrophobic contacts were made throughout the binding site. All predicted inhibitor-TIM interactions involved TIM residues that were highly conserved. The discovered compound may provide a scaffold for elaboration of other inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triosephosphate isomerase: a theoretical comparison of alternative pathways.

Three mechanisms proposed for the triosephosphate isomerase (TIM) catalyzed reactions were studied with the QM/MM approach using B3LYP/6-31+G(d,p) as the QM method. The two pathways that involve an enediol species were found to give similar values for the barriers and the calculated rates are in satisfactory agreement with experiment. By contrast, the mechanism that involves intramolecular prot...

متن کامل

Endoglucanase activity at a second site in Pyrococcus furiosus triosephosphate isomerase—Promiscuity or compensation for a metabolic handicap?

The eight-stranded (β/α)8 barrel fold known as the Triosephosphate isomerase (TIM) barrel is the most commonly observed fold in enzymes, displaying an eightfold structural symmetry. The sequences and structures of different TIM barrel enzymes suggest that nature exploits the modularity inherent in the eightfold symmetry to generate enzymes with diverse enzymatic activities and, in certain cases...

متن کامل

Effects of Salinispora derived metabolites against multidrug resistance, an in-silico study

Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...

متن کامل

The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes.

Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), a...

متن کامل

Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia.

Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to ina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014